Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight.

نویسندگان

  • Z Jane Wang
  • David Russell
چکیده

Dragonflies are four-winged insects that have the ability to control aerodynamic performance by modulating the phase lag (phi) between forewings and hindwings. We film the wing motion of a tethered dragonfly and compute the aerodynamic force and power as a function of the phase. We find that the out-of-phase motion as seen in steady hovering uses nearly minimal power to generate the required force to balance the weight, and the in-phase motion seen in takeoffs provides an additional force to accelerate. We explain the main hydrodynamic interaction that causes this phase dependence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.

The aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. Available morphological and stroke-kinematic parameters of dragonfly (Aeshna juncea) are used for the model dragonfly. Six advance ratios (J; ranging from 0 to 0.75) and, at each J, four forewing-hindwing phase angle differen...

متن کامل

Flow Visualization and Force Measurement of an Insect Wing Based on Dragonfly Hovering

Flow visualization and aerodynamic force measurements were conducted in order to investigate the flow phenomena around the wing of a hovering dragonfly. Two pairs of 4-bar linkage mechanisms were installed in a flapping model and driven by a stepping motor. The foreand hindwing have a phase difference angle of 180°. The stroke amplitude, pitch angle and incidence angle of the model were 75°, 0-...

متن کامل

The Effect of the Phase Angle between the Forewing and Hindwing on the Aerodynamic Performance of a Dragonfly-Type Ornithopter

Dragonflies achieve agile maneuverability by flapping four wings independently. Different phase angles between the flapping forewing and hindwing have been observed during various flight modes. The aerodynamic performance depends on phase angle control, as exemplified by an artificial flying ornithopter. Here, we present a dragonfly-like ornithopter whose phase angle was designed to vary accord...

متن کامل

A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.

Aerodynamic force generation and mechanical power requirements of a dragonfly (Aeschna juncea) in hovering flight are studied. The method of numerically solving the Navier-Stokes equations in moving overset grids is used. When the midstroke angles of attack in the downstroke and the upstroke are set to 52 degrees and 8 degrees, respectively (these values are close to those observed), the mean v...

متن کامل

Passive wing pitch reversal in insect flight

Wing pitch reversal, the rapid change of angle of attack near stroke transition, represents a difference between hovering with flapping wings and with a continuously rotating blade (e.g. helicopter flight). Although insects have the musculature to control the wing pitch during flight, we show here that aerodynamic and wing inertia forces are sufficient to pitch the wing without the aid of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 99 14  شماره 

صفحات  -

تاریخ انتشار 2007